python - Comparing common strings in two pandas dataframe columns -
i have pandas data frame follows:
coname1 coname2 apple [microsoft, apple, google] yahoo [american express, jet blue] gap inc [american eagle, walmart, gap inc]
i want create new column flags whether string in coname1 contained in conames. so, above example, dataframe be:
coname1 coname2 isin apple [microsoft, apple, google] true yahoo [american express, jet blue] false gap inc [american eagle, walmart, gap inc] true
set frame:
df =pd.dataframe({'coname1':['apple','yahoo','gap inc'], 'coname2':[['microsoft', 'apple', 'google'],['american express', 'jet blue'], ['american eagle', 'walmart', 'gap inc']]})
try this:
df['isin'] =df.apply(lambda row: row['coname1'] in row['coname2'],axis=1)
Comments
Post a Comment